home *** CD-ROM | disk | FTP | other *** search
- /* dht/test_dht.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* Author: G. Jungman
- */
- #include <config.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include <math.h>
- #include <gsl/gsl_ieee_utils.h>
- #include <gsl/gsl_test.h>
- #include <gsl/gsl_dht.h>
-
-
- /* Test exact small transform.
- */
- int
- test_dht_exact(void)
- {
- int stat = 0;
- double f_in[3] = { 1.0, 2.0, 3.0 };
- double f_out[3];
- gsl_dht * t = gsl_dht_new(3, 1.0, 1.0);
- gsl_dht_apply(t, f_in, f_out);
-
- /* Check values. */
- if(fabs( f_out[0]-( 0.375254649407520))/0.375254649407520 > 1.0e-14) stat++;
- if(fabs( f_out[1]-(-0.133507872695560))/0.133507872695560 > 1.0e-14) stat++;
- if(fabs( f_out[2]-( 0.044679925143840))/0.044679925143840 > 1.0e-14) stat++;
-
-
- /* Check inverse.
- * We have to adjust the normalization
- * so we can use the same precalculated transform.
- */
- gsl_dht_apply(t, f_out, f_in);
- f_in[0] *= 13.323691936314223*13.323691936314223; /* jzero[1,4]^2 */
- f_in[1] *= 13.323691936314223*13.323691936314223;
- f_in[2] *= 13.323691936314223*13.323691936314223;
-
- /* The loss of precision on the inverse
- * is a little surprising. However, this
- * thing is quite tricky since the band-limited
- * function represented by the samples {1,2,3}
- * need not be very nice. Like in any spectral
- * application, you really have to have some
- * a-priori knowledge of the underlying function.
- */
- if(fabs( f_in[0]-1.0)/1.0 > 2.0e-05) stat++;
- if(fabs( f_in[1]-2.0)/2.0 > 2.0e-05) stat++;
- if(fabs( f_in[2]-3.0)/3.0 > 2.0e-05) stat++;
-
- gsl_dht_free(t);
-
- return stat;
- }
-
-
-
- /* Test the transform
- * Integrate[x J_0(a x) / (x^2 + 1), {x,0,Inf}] = K_0(a)
- */
- int
- test_dht_simple(void)
- {
- int stat = 0;
- int n;
- double f_in[128];
- double f_out[128];
- gsl_dht * t = gsl_dht_new(128, 0.0, 100.0);
-
- for(n=0; n<128; n++) {
- const double x = gsl_dht_x_sample(t, n);
- f_in[n] = 1.0/(1.0+x*x);
- }
-
- gsl_dht_apply(t, f_in, f_out);
-
- /* This is a difficult transform to calculate this way,
- * since it does not satisfy the boundary condition and
- * it dies quite slowly. So it is not meaningful to
- * compare this to high accuracy. We only check
- * that it seems to be working.
- */
- if(fabs( f_out[0]-4.00)/4.00 > 0.02) stat++;
- if(fabs( f_out[5]-1.84)/1.84 > 0.02) stat++;
- if(fabs(f_out[10]-1.27)/1.27 > 0.02) stat++;
- if(fabs(f_out[35]-0.352)/0.352 > 0.02) stat++;
- if(fabs(f_out[100]-0.0237)/0.0237 > 0.02) stat++;
-
- gsl_dht_free(t);
-
- return stat;
- }
-
-
- /* Test the transform
- * Integrate[ x exp(-x) J_1(a x), {x,0,Inf}] = a F(3/2, 2; 2; -a^2)
- */
- int
- test_dht_exp1(void)
- {
- int stat = 0;
- int n;
- double f_in[128];
- double f_out[128];
- gsl_dht * t = gsl_dht_new(128, 1.0, 20.0);
-
- for(n=0; n<128; n++) {
- const double x = gsl_dht_x_sample(t, n);
- f_in[n] = exp(-x);
- }
-
- gsl_dht_apply(t, f_in, f_out);
-
- /* Spot check.
- * Note that the systematic errors in the calculation
- * are quite large, so it is meaningless to compare
- * to a high accuracy.
- */
- if(fabs( f_out[0]-0.181)/0.181 > 0.02) stat++;
- if(fabs( f_out[5]-0.357)/0.357 > 0.02) stat++;
- if(fabs(f_out[10]-0.211)/0.211 > 0.02) stat++;
- if(fabs(f_out[35]-0.0289)/0.0289 > 0.02) stat++;
- if(fabs(f_out[100]-0.00221)/0.00211 > 0.02) stat++;
-
- gsl_dht_free(t);
-
- return stat;
- }
-
-
- /* Test the transform
- * Integrate[ x^2 (1-x^2) J_1(a x), {x,0,1}] = 2/a^2 J_3(a)
- */
- int
- test_dht_poly1(void)
- {
- int stat = 0;
- int n;
- double f_in[128];
- double f_out[128];
- gsl_dht * t = gsl_dht_new(128, 1.0, 1.0);
-
- for(n=0; n<128; n++) {
- const double x = gsl_dht_x_sample(t, n);
- f_in[n] = x * (1.0 - x*x);
- }
-
- gsl_dht_apply(t, f_in, f_out);
-
- /* Spot check. This function satisfies the boundary condition,
- * so the accuracy should be ok.
- */
- if(fabs( f_out[0]-0.057274214)/0.057274214 > 1.0e-07) stat++;
- if(fabs( f_out[5]-(-0.000190850))/0.000190850 > 1.0e-05) stat++;
- if(fabs(f_out[10]-0.000024342)/0.000024342 > 1.0e-04) stat++;
- if(fabs(f_out[35]-(-4.04e-07))/4.04e-07 > 1.0e-03) stat++;
- if(fabs(f_out[100]-1.0e-08)/1.0e-08 > 0.25) stat++;
-
- gsl_dht_free(t);
-
- return stat;
- }
-
-
- int main()
- {
- gsl_ieee_env_setup ();
-
- gsl_test( test_dht_exact(), "Small Exact DHT");
- gsl_test( test_dht_simple(), "Simple DHT");
- gsl_test( test_dht_exp1(), "Exp J1 DHT");
- gsl_test( test_dht_poly1(), "Poly J1 DHT");
-
- exit (gsl_test_summary());
- }
-